BART's Next Generation Fleet: Migration to a Contoured Wheel Profile

William Doran - Prescience

Eric Magel - National Research Council, Canada

Outline

- 1. The BART system
- 2. Planned changes
- 3. Designing for migration
- 4. Managing the process

BART System

- Created by State Legislature in 1957
- Began Operation in 1972
- Length: 112 Route Miles
- Stations: 46
- 66 Inch Gauge:
- Power: 1000 Volt Third Rail

BART Vehicles

669 Existing Revenue Vehicles Number:

Propulsion: Four 150 HP 1000 VDC Motors (All Axles)

Construction: Aluminum body

27,500 lb. (Crush Load) Axle Load:

80 MPH Maximum Speed:

30 MGT Yearly on heaviest lines MGT:

Operations

Operation: Fully Automated (Normal operation)

Manual: Maximum 25 MPH (Road Manual)

Crew: One Operator

10 Car Maximum (Limited by Platform) Train Length:

Passengers: 435,000 Average Weekday

Maintenance: Less than 24 hours available each week

Operating Hours: 0400 to 0130 Weekday (21.5 Hours)

0600 to 0130 Saturday (19.5 Hours)

0800 to 0130 Sunday (17.5 Hours)

Legacy (Cylindrical) Wheel Profile

- BART is only system operating with cylindrical wheel at high speed
- Based on 1973 Study:
 - Measured Horizontal and Vertical Accelerations in side-frame, floor, and axle journal for several wheel profiles
 - Concluded that there was no appreciable difference in wheel profiles
- Acceptable performance when wheel and rail were new
- Problems accelerated as system aged

Current W/R challenges

- Wheels replaced at or before 324,000 miles (average)
- Rail head corrugations
- Rolling contact fatigue
- Repetitive grinding effort targeted
- Reduced rail life
- Wheel and rail noise

Current Efforts at BART

- Improve measurement capabilities
- Automate data collection
- Automate data analysis
- Focus on trends as well as exceptions
- Adopt predictive rather than reactive approach

- Improve VTI
- Increase Rail and Wheel Life

A new era at BART

- Over next five years
 - Will accept 775 new cars from Bombardier
 - All will arrive with new wheel profile (BT-3)
 - New rail purchase (to new shape?)
 - Upgrade rail grinding practices

A (radically) new wheel profile

Design of new rail profiles

- Control contact stress
- Reduce wear
- Minimize grinding
- Spread wear across wheel

Design of new rail profiles

- 1 high
- 1 low
- 2 tangent
 - CPG
 - CPF

		baseline o	conditions	new designs		transition	ional states	
	Wheels	legacy	BT3	legacy	BT3	legacy	ВТ3	
	Rails	worn	worn	legacy	BT3	BT3	legacy	
	mild curves							
Frictional work	contact	2 pt	1 pt	1 pt	1 pt	1 pt	1 pt	
	high	840/26	11.8	27.4	11.8	26	11	
	low	29	9.12	8.4	8.9	6.5	9	
	sharp curv	es						
	contact	2pt	2pt	1 pt	2 pt	1 pt	2pt	
	high	1859/93	239/48	158	132/119	111	182/47	
	low	160	81	71	80/71	48	83	
contact stress	mild curves							
	high	626/875	1451	937	1026	861	1962	
	low	1176	1380	1319	926	1351	926	
	sharp curves							
	high	758/772	1116/950	935	1034	1466	1778/1239	
	low	1175	1388	1314	2348	1351	926	

Interim shapes

Average measured worn low rail LOW_INT LOW_BT3

Average measured worn tangent rail (TANG_INIT) CPF_INT CPF_BT3

Rail Profile Implementation

Grinding Cycle	High rails	Low rails	1/2 tangent	1/2 tangent
1	HR	LOW_int	CPG	CPF_int
2	HR	LOW	CPG	CPF_int
3	HR	LOW	CPG	CPF

Concerns

- Concerns during implementation
 - Effectiveness of grinding
 - Rail wear
 - Rolling contact fatigue formation
 - Gauge corner shelling
- Identified 50 locations for monitoring

Monitoring Locations

Selected by:

- Rail wear
- Frequent grinding
- High noise
- Presence of RCF

Monitoring Purpose

Track changes in rail shape and condition

- Profile measurements with MiniProf
 - **Deviation from Target Rail Profile**
 - Monitoring radius of rail crown
- Magnetic particle inspection
 - Monitor for Rolling Contact Fatigue
- Surface photograph
 - Monitoring contact band
 - Rail surface finish after grinding
- Surface roughness after grinding

Developing Grinding Plan

- Grinding to final profile requires significant metal removal
- Plan to progressively achieve LOW and CPF shapes
- Strategy, patterns, passes
- Equipment up-time

A new 119 rail shape?

RE119 @ 1:40 HR

CPG

LOW

CPF

Conclusions

- New cars, new wheel shape
- Better steering, less wear, reduce corrugation (?)
- New rail profiles to manage transition
- Improve grinding practices

Increased W/R life

Dramatic reduction in noise levels expected

Thank you!

WDoran@PreScienceEngineers.com

Eric.Magel@nrc.ca

